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AN ERROR ANALYSIS FOR THE FINITE ELEMENT METHOD

APPLIED TO CONVECTION DIFFUSION PROBLEMS

ABSTRACT L

This paper analyzes the finite element methodi applied to a convection

diffusion model problem. Linear elements are used' for the trial space. The

error is measured in a norm closely related to the L norm. When the testP

space is composed of linear elements with parabolic upwinding, the method is

shown to be optimal when the input data is piecewise smooth -- a condition which

is usually observed in practice. Without these smoothness assumptions, the

method is shown to be non-optimal, even if the class of test spaces is extended

to include any elements which have a shape independent of the mesh size.
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INTRODUCTION

A large amount of attention has recently been focused on the application

of finite element methods to singularly perturbed boundary value problems.

These problems arise, for example, in convection diffusion equations for fluid

mechanics in which the convective term dominates. Finite element methods

which employ the standard piecewise polynomial test and trial spaces lead to

solutions having spurious oscillations unless the mesh size h is excessively

small. A popular way to alleviate this problem is to "upwind" the test space.

In the case of linear elements this can be done by adding a quadratic term,

multiplied by some parameter a , to each piecewise linear basis function of

the test space (see e.g. [51, [101-1121, [151-[17]). Heinrich,et al. [111], [121,

Christie, et al. [6] and others have displayed the optimal a , which is deter-

mined in such a way so that for the problem

-EU"+U' = 0 , u(6) = 0 , u(1) = 1

the approximate solution agrees with the exact solution at the nodes. Griffiths

1101 selects the parameter a in order to obtain the best quasi-optimal type

estimate of the form

I lu-uh I I c(c,h) inf I lu-w l I
WESh

where u is the exact solution, uh  is the approximate solution, Sh is the

trial space, and II'1 is the L norm of the derivative. However, the

constant c is not bounded uniformly in c and h ; for example,if t Is

very small with respect to h , c(c,h) will increase with rate I- I as h - 0

Upwinding of the test space can also be done through the use of L-spline

basis functions. Methods using these spaces are studied in Hemker 1131,
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de Groen [7],and Hemker and de Groen [8], but a norm is used to measure the error

between the exact solution u and its piecewise linear approximation in which

the error cannot be small unless h << F.

The analysis in this paper is done specifically for the model problem

(1.1) -Eu" + u' f

u(O) = u(l) =0

In section 2 we present the general theory for obtaining quasi-optimal estimates, as

established in Babuska, Aziz [1]. Mesh dependent norms for the model problem,

analogous to those presented in [2], are defined in section 3. We will be measur-

ing the error in a norm similar to the L norm,which is appropriate in our

case because it allows for approximability when using a piecewise linear trial

space. In section 4 a quasi-optimal result of the form

(1.2) 1 UI hll < c inf I lu-w I
wESh

where c is independent of E and h , is proven when the test space is composed

of L-spline basis functions. However, it is also shown that for a large class of

test functions, it is in general impossible to obtain a result of the form (1.2).

In particular, quasi-optimality cannot be proven with the use of quadratically

upwinded elements for any choice of the parameter a unless we restrict our-

selves to the case of "reasonable" inputs f . This is shown in our main result,

presented in section 5, which says that if f is piecewise smooth, and a is

chosen to be the optimal one introduced by e.g. Christie et al. 161, and

Ll-
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Zienkiewicz and Heinrich [17], then quasi-optimality is obtained.

2. SOME ABSTRACT RESULTS

In this section we review two crucial results concerning variationally

formulated boundary value problems and finite element approximations.

Theorem 2.1. Let KI,A and K 2,A be two reflexive Banach spaces, indexed

bya parameter A with A varying over some index set, with norms and

11112,6 respectively, and let B be a bilinear form on K A x K 2,A  We

suppose the following are satisfied:

(2.1) IBA(uv)l < CluII1lAIIvU12,A for all uEKI,1,  vEK2 A ,

(2.2) inf sup IBA(uv)I > C2 > 0

uIEK VQ~auI A  rK2,A

and

(2.3) sup IBA(u,v)I > 0 for each 0 vEK2 , A

where C1 and C2 are positive constants , possibly depending on A

Then if f4E(K 2 ,A)') there exists a unique solution uEK1 , to the problem

(2.4) BA(u,v) - f(v) VvEK2,A
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Moreover, u satisfies

IIUIflA 2,A

If the bilinear form B A(.,.) satisfies the assumptions (2.1), (2.2), and

(2.3), BA is said to be a (Ci,C 2)-proper bilinear orm over the space

K1,A x K2,A . It should be noted that (2.2) and (2.3) can be shown to be

equivalent to

(2.2)* inf sup IB (u,v)I > C2 > 0
vEK2, A  uEK , A

1 V112, =1 11u l1 ,A=1

and

(2.3)* sup IBA(u,v)l > 0 *40 # uEKl, Arek2, A

This observation will be specifically used in this paper.

Since we will be studying finite element approximations to u we let SlA

and S2,A be finite dimensional subspaces of KlA and K2 A, respectively.

Clearly condition(2.1) holds on SI, S with the same constant C1 . We
lA 2,AI

will be invoking the following theorem concerning the finite element solution uh

Theorem 2.2. Suppose B is (Ci,C')-proper over SI S furnished
A 2,PPOe 5 1,A 2,A

with the norms IIl, A  and 1I 111 2,A, respectively. Let uEK1, A ' and let

uhESIA be the unique solution to BA(uh,v) = BA(uv) for all vES2 ,A Then

"m --"I II~am rin
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I Iu hi )- inf I lu-wl 1l,A
U2, _e 1,A

For the proof of Theorems 2.1 and 2.2, see e.g. [i].

k

I.

I.

I.



6

3. MESH DEPENDENT NORMS AND SPACES

In this section we define the various norms, spaces, and bilinear forms used

throughout this paper. The norms introduced here are analogous to those

defined in [2].

Throughout the paper Hk (1), k = 0,1,..., 1 < p < o' , will denote the usual
p

Sobolev space on the interval I in R consisting of functions with k

derivatives in L (I) On this space we have the usual norms given by

[( k fu~xld) 1 < p

(3.1) HlUlkp I  I

ess sup lu(J)l p =

j =0

H (I) denotes the subspace of H (1) of functions that vanish at the endpoints

of I. Note that H L
p P

Let A = [0= x <x 1  .. xN  } , where N = N(A) , be an arbitrary mesh
on the tnterval I = [0,1]. Let h x - I. = , j = .... N,

= (h + h )/2 i = I,...N-l and h(A) = max h.
H Jj j

We now define the space H Ito be the compeion of H (1)

furnished with the norm

1 1

(f lulPdx + P ju(xj) , I < p <

(3.2) lull 0 j=l
H°
p ,A

The space H can be easily identified with L ( R -  , that is,p,A p
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u (u,dl,...,dN l)EH L QIN-1 , andN-1 p, p

N-1

Lp ( -) J=
(3.3) Hull 01o

ma~jU L() djjl

In consistency with our definition, we say uEH0  nl (1) if uEH (I) and
pA p p

d. = u(x.) , j = 1,...N-l

2 0 1 2
Let us now define H = {vEH (I): vii .E H  ) j = 1,...N} We will

equip this space with a norm to be defined later.

On H H 2 , where -1 + - = I , we define a bilinear form BA(,)
p,A qA p q

by

N( N-i
(3.4) B (u,v) = j u(-ev"-v')dx - j Ed J(v'(x))

Jl 1 . J=l

J

where J(v'(xj)) = v'(x +O) - v'(xj-0) and v'(x+O) = lim v'(x) These limits

are well defined because v[I, EH 2 (Ik) for each k . Now we will furnish the

2k
space H with the norm lII'iH defined by

p,A

lB (u,v)>
(3.5) llvl supo mmu-.

UEHq,A q,A

It is evident that the triangle inequality and linearityare satisfied by

111'[1 .We must show positive definiteness. To do that we make use of the following

identity for vEH
2 A
p,A
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xt (x-x )

(3.6) v(x) =f(L*v)(t)(1-~e )dt - (e £ -1)t:J(v'(x .)) +

0 1<i<N-1

+ 1-e (P- 6 -1)tJ(v'(x~) - L t l E

1-e E 0

where

(3.7) (L*v)11  = (cv"+v')I1  ,

2
For vEH pA select u 0 (~ l d 1. d - suhtat u =, g(~~,

anid d. sgnJ(v'(x.) -i..Ni, then

(3.8) IB(u,,v)t ) J IL*vjdx +- Y cIJ~v'(x.))l , 0
0 0

Let us now introduce another norm. For any v46H define L

by

(3.9) I 1fIV"'iX J-1

4 if I < p <

11vH 2
w'' ax HtEv'+v'ijj' + max tIJ(v'(x )10-

if p=
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We shall now prove that the norms 2 and are equal
2p,€ ,A

for I < p < ,- and equivalent when p

Lemma 3.1. Let vEH2  thenP, , the

(3.10) I I 2 I= IvIII 1 < p <
p, E,A

and

S~1vH 2 _ j]viH I ILH2 =

E. , LN ,C,A

Proof. For 1 < p < o, a straightforward application of Hblder's inequality

yields

BAu') f ll,,qdxq YJ lcv"+v'lPdx)P

0 ~j=1I.3

N-1 N-1 1

+ ( P Id Iq)q( £ lPIJ('(x))P 1 -P) p

N- ]± NlJ IV+VIX

0 2.

J

j=l HqA p

and thus

(3.11) 1VII t 3 tVlII 2
p, ,A
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That 3.11 holds when p = 1 and p = follows directly from Hdider's in-

equality.

2
For the inequality in the other direction, let vEH , 1 < p < o, be

given. Select u (u,d,, ...d N  )Hq as follows:v " N-1 qA as ol ws

u =-L*v sgn(Lv)

d. -E p - IJ(v'(x.))Ip-101-psgn(J(v ' (x

for I < j < N-1

Then Hu= II I 1 < p <

H °  H2
q,6 , ,

H l~vII o -- 1 P=l

and BA(uvV) = i I"2 i < p < M
VH A

This immediately yields

IlIlvilIl > IlIlV 2 1 < p <

p,C ,A

For p = ' , let L be the index such that

I rv"+v' 1 L(IL) = max F v"+v' IL (I)

and let J be the index such that

E71JV,( i pi, max cIJ(v'(x ))IopcIJ~'(x))Io 1
=l<N-1 -
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Let q > 0 be given and define

E, = {xE It: I(cv"+v')(x)l > I'Ev"+v'IL (iL L

Then m(E ) > 0, where m(A) is the Lebesgue measure of A.

2
For vEH.,A define uN = (U,d1 , ...dN-) as follows:

-isgn

(3.12) u = -XE (m(E)) sgn(L*v)

d. P-isgn(J(v'(x if j = J

0 , j = ,.. .J-,J+1,...N-1

where XA denotes the characteristic function of the set A . Then

iiuv;ii = 2 and
HI,A

[iiviii I (, I v+v'L (IL)-n + EiJ(v'(xj)) Ip))/2

Since n was arbitrary, lVi2 1/

lE ,A

which concludes the proof.

1/ That this estimate is sharp can be seen by taking, for example, A = {0,-1,11

x _

_ - - 2' Then livl 2 = 2, but IlivIll 1
v = 4 (x) = 2

l-x, < X < I H,E,

However,any v with L*vI j = 0 has Ilvii 2 = IIIvIli
j for J=l,...N H
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We now prove an imbedding theorem.

Lemma 3.2. Let vCH2  = ( H2 ,if ) then v4EL_(L)H 1 (1) with
p , ,A p H2 p

p,c ,A

(3.13) IVIIL (I) - 411vl 2
p,E ,A

and
1

(+-i) 2(1-e 1)P

(3.14) 1lvH I  : 5+ + 1_2

pP(I-e p, ,A

for 1 < p <

Furthermore, if we assume 0 < < c then

(3.15). Iil ll,, c p llvll 2 Cc qII H2

Hp ,c,A p ,

I < p < '=, + -1
_p q

where c is independent of r , p , and A

Proof: We use (3.6) for v(x) and write

v(x) = w (x) + w2 (x) + w3 (x) , where

x (x-t)
w1 (x) = V((L*v)(t))(1-e )dt

0
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(x-x )

w 2(x) =- (e - )Fd(v'(x)
1< i<N-i

and
x

w 3(x) I (ij 1) (1) + W 20))

By inspection, and an application of 1161der 's inequality, we obtain

1

and

N-i N-1 -1
1w W1~ < Y. Fc(J(V'(K.) Y C£Jj(v'(x M)P, < 0 VI

2 = j.~ l HF' 9

Since w()(<w(1 + w(l <211v112  (3.12) is proven. Also

3.i/

pp H

-I

2N1-e E)p p 2 1 <
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For p we have Hw;HL (1 2 II H 2 which

is the limiting estimate for p

Next,

X-X
i N-I

1<i<N-11=

where 0 f xi -,

z(x),if x

Therefore, we have

N-I N-i1

(3.17) 1w1I 1 ~i- LC)< (L) PJ(v (X))

1 11

<Y ElJ(v'(x ))p~ p P < C'P HII 2

1 < p,<

x xt 1

Finally, w,(x) =r(L*v)(t) e- d t f (1*)(t) 1 (-td

0 0

whr 4x ={x if x > 0

0 if x < 0
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2/
Since L*vOEL (1) and X. )(ELl(1) Young's inequality implies that

p F- C

w 1 C L (I) and

(318 wL,' (I < I{L*V..L (1' l  ()' i

p p p

P IIL vI I P I ' P

p

Combining (3.1b), (3.17), and (3.18) with (3.13) yields (3.14).

Lemma 3.1, equation (3.5) and a simple verification of (2.3) imply that

Ho  2  1 .
B (uv) is (ll)-proper on Ho H2  for < p <, where -- + I

1 o ,A q~fA p q

and (1l,)-proper on H1  X H 2 Also, for I p , the spaces
0 2, • A "o• i,

H0  and H are reflexive, and so in this case we may apply Theorem 2.1pA p•t A

which leads to the existence of either the solution u , for the problem

B (U,V) = f(v), VvEH
2

A pF ,A 9

or the solution v of the adjolnt problem

B (u,v) = f(u), VuEH'
A p'

Existence for the cases p = I or p = does not follow from Theorem 2.1

directly, but has to be dealt with separately.

-/Young's inequality states that for 1 < p < , if sELP(IRn), gEL (IRn )

then h - s*g exists a.e. and belongs to LP(IR n ) and

I{hI IL  < 11s11 L  {{g1IL1

Of course to apply this result to our case, we should extend L*v by zero to

all of IR
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4. THE FINITE DIMENSIONAL SPACES OF FINITE ELEMENTS

In this section we will analyze the behavior of the bilinear form (3.4)

on finite dimensional spaces SI A  2A ' SI, pA ' A S : H, The

space of trial functions SI, A  will be the usual space of linear elements

I~ ,A

(4.1) S {u,d 1 .... dN-1:U4Et2,uuj " is linear, j=l,... N, d ju(x.), j=l,. ..N-3}.

However, for the test space $2,A we will allow various other possibilities,

especially

(4.2) = (v 461:Lv = 0, j-l,.. .N}
2 A 2

and

N-1(4.3) $ H (x) [
j=1

where

3a. x Ei

((X jl) + # (x-x.1 ) (x.X), forh 2.

(x -x) 1 (Xx jix) for xeI1 .lh 1 l)h2 iJ+l- d o C: i+nd
J+l

and a i a (E,h) , i.e., in general ctj will depend on r: and hj
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E E p OFigure 1: The basis functions E and S

jS2,A "j 2,A

E S
Figure I shows the shapes of the basis functions for the spaces S E and S2

2,A 2,A

Remark: (4.1) is the space of L*-splines and (4.2) was introduced in [51,

1101-1121, [151-[171. For other various analyses of the use of L*-splines, we

refer the reader e.g. to [71-[91, 1131.

We will now study the inf-sup condition of the bilinear form BA (uv)

on S x when S SE defined by (4.2).
o ,A S2 A, 2,A 2,A

0 E 2
Theorem 4.1. Let SC H, S 2,C H  be defined by (4.1) and

I,A p ,A ' 2A q c,A
(14.2) respectively) with + I = 1 and I < p < Then the bilinear form BA

p q

defined by (3.4) is (C,C )-proper with C1  I , and C= 2

Proof. Given ES 2,A select u ES such that
2 , A9 v ,A



u v(x. -EPIJ(vv(x.))Ipo PsgnJ(v?(x)

for 1 <p < (or 1<q <c

Then we have

(4.) B~u~) =N-1I 1 + (+ q/p)

(44 u') E ljJ(v'(x))W -q/p
Aj 1

N-i )qlq IY y~l(V( HV 2
j =1 H

q,,A

For any piecewise linear u we have

N Nf uIlx fIdx - 1 1 ux )IP + Iu(x.)IP)h <
01

< I l~ WO 1< p <

j.1

a uld IUL OD(I) I < .Nlu(xji)I

Therefore,

N-i N-i
(4.5) ilu_ 11P0 < 2 Y Iu v(xi)Ipp j < 2 y 1 q q+j 2 1 21

HPt jinl J=l H q9-9

1<' p - and Hu VH 0 1=u II (1) =1

Ft ia IIv, (14. 4) anld (U. 0 i rj)vI A

AuvVi H 2 Hv 2

vov H 0 H H g.Aq9F9
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If p-- , q take u v(x) =d , where d , j = 1,...,N-19 is defined by
B A(u v ) VBAv(UviV)

(3.12). Then 2FuvTl = 1 1 v l 2 which corresponds to the above

p,A 1,,t

estimate when p = 1. Hence,Theorem 4.1 follows with C21 = 2 p,1 _ p <

Obviously C = 1, and condition (2.3)' is also easy to check.

This leads to the following theorem.

Theorem 4.2. Let S and S be the spaces defined by (4.1) and
1,A 2,A 0 E

(4.2), respectively and 1 < p . If uEHp, and we denote by uheS lA the

function such that

E E
B (uv) = B(u,v) VVES2,

then

1

(4.6) IuiE-u1H0 < (1+2p) inf 11u-Wfj 0
H0  0S Hp,A 1,A P,A

Proof. Theorem (4.2) follows immediately from Theorem 4.1 and Theorem 2.2.

EThe next theorem shows that (u-uh)(xj) 0 , for j 1,... N-l

Theorem 4.3. Let uH0 E S 0 with

pA 1e < and 1, A H ,A

E E
(4.7) B(u ,v) = B(u,v) , YvES2,A

Then

E

(4.8) uh(x ) - di = 0 , i 1,..., N-1

with u (u,dI ....dN-l)
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Proof. Let 1 < p < o By Theorem 2.1, there exists v. H,2

such that

(4.9) B (u,v ) = d VuEH , + 1
A i i qtA tp q

(4.9) yields -v'.' -v! = 0 , on every 1, , J(v!(x.)) 0 , j # i , and
i

J(vi(x )) = 1

Because vj(x) is continuous, and ev" + v' = 0, on (Ox and (xi ,l),

v. is the Green's function at x - x i  Obviously vi EH 2  and viESAE

This implies that (4.9) holds for I < q . Thus (4.7) and (4.9) imply

B( u-u,v1) = 0 E (x )-d ',

which finishes the proof.

Theorem 4.3 is a restatement of the well known fact that when the Green's

functions at x = x i , 1 < i < N-1, belong to the test space, then the error

at the nodal points is zero.

Now we turn to the study of the space S2, A  in a more general framework.

Since B A(u,v) depends only on the derivatives of the test functions, we let

N
(4.10) v' = aj j

j-1

where Xj has support in I

The situation is clear from Fig. 2
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ajX1
u(X)ES1A

O= I x1  T~ 3'N X.
10 X , X - 23 xN1I N-

fvci =N 3 X 3  1 -N

Figure 2: The graph of v' Y ajx., where vES2 A and uESI AJ=l

Obviously we have 0 v'dx 0, because v(O) = v(1) = 00

Let X,, J = 1,...,N have the following properties.

X.

(4.11) i) J xj(x)dx = Wh

xj-1

X.

il) I [X; xj] dx = ylJlh

x.jii dh=4. h.
f fX+jl h.J

xj

iii) F 1L×+x+jl dx = y 1 hj

xJ1

iv) IXj~ _d y h
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v) a) x.(xj I ) = Li,

b) X (x.) li
:i 6

For u ESI A  with u(x.) = d. , j=1,...N-1, and vES 2 ,A, (4.11), (3.4), and

(3.9) imply

N-1 [j]0 1

(4.12) B A(uv) - 1 d [ iY3 h+a j+IJ'2 h j+I1
j=

N NN- [j+ld Ua[jl [1

(4.13) a)Ilvj p  = N Nljl +a - [j Y a Y

H 2 j=l J14 i J-1 + 6 ip ,c,A l l

PN .-A

b) N a Yj hi - 0

j=1 1

In the argument that follows we take p = 2, h = h for j=],. ..N. where h =- and

yi] Yi (h, ), j = I,...,N, depends in general on h and f Before elaborating on

the next theorem, we will prove some lemmas.

Lemma 4.4. Let a., j = 1,...,N, be such that

(4.14) aj-aj+K 1, j = 1,...,N-1,

and
N

(4.15) a 0
J-l

IBM



23

then

N 2 N N 2  KN+1

(4.16) (a) t(K,N) 2 + N 1 (
J=l (I-K) (K

and

N 2 N3-N
(b) D(1,N) Y a. = 2

j=l I

Proof. From (4.14) it follows that

+ AK-J+1,

a.=-- j 1 ,... ,N , K # 1
3 I-K 

K

Using (4.15) we find that

NK
N- 1

KN_
K -_1

and (4.16) follows easily.

N-I

If K = 1, a. 
=  2 j which implies 4.16(b)

Lemma 4.5. Let D(K,N) be defined by (4.16), then

(4.17) (K,N) > N (N-i)-(,+ KI}2

Proof. First suppose K > 0 (K # 1) Then

" 

.V
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(l-K) (I-K)N(I+K+... +K i

N N-1 + K(2N-4) +...+ K N-2(N-i)
N-i(l+K)(I+K+...+K - )

Observing that jN j > N-i, for j = 1,... ,N-1, and since we are assuming

that K > 0 we get

4(K,N) N [(N-1) (I+K+ 'KN-i ) N(N-1)

(I+K)(I+...+K
N I  - (1+K) 2

If K = 1 (4.17) follows directly from (4.16b). Next suppose that K < 0 If

N is even, from (4.16) we obtain

N2N( N > N(N-I)
-- 2_I - (I-K) 2 - (I+1K!) 2

If N is odd, then we have

(K,N) N + N2(K N--K N-2+...+i) N N2(K N-  KN-2 +...+I)(I )24 N • = -- ..
(I-K) (K N-I)(K-l) (1-K)2 2 KN-I +KN-2+...+I)

Because N is odd and K < 0, we have

N-i_ N-2 N-i1IK K -...+l > K +...+I > 0

and so

N N N(N-1)

(K-i) 2 (l-K)2  (1+IKI) 2

which completes the proof of the lemma.
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Define and w by

(4.19) V 3 - h " 6  V =  + h Y5 " and let K

when v # 0 .

Then we have, by (4.12),

N-i N-i
(4.20) BA(u,v) = -h Y d'[av-a j+l] = -hV Y d.[a j-a j+K), provided v # 0.

Furthermore, using (4.13) we have

N

(4.21) 1vll2 > hy a 21112 - 4 Y_1  I
H 2, . ,A J=

Select v., where v is of the form (4.10), such that it is characterized by

'a. of Lemma 4.4. Then (4.20) and (4.14) imply that
1 =1

N-1 - N-I , 1/2
(4.22) sup IBA(u',v)I sup Ihljvi I d. < Ih 121%( ' d3 ) lvi

Hull <1 HuHi <1 jI ---

H2,A 2,A

uES 1,A ue lA

where we used the fact that

HI~2  N-i2

(4.23) Hull > h d 2

-2,A

U~sing (4.21), (4.22), and I~emas (4.4) and (4.5), we obtain
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(4.24) inf sup Ba(u,v)I < 31

J vU H2  _ uHH 0< [4(K,N)N_4 2 -H2, -,A 0o

uES2, A  YCS2, A

< 3H'I(l+IKj) 3(Ipj-+jvj)
-- 1 1 1 1

(N-1) y4 (N-I) y4

A slight modification for v = 0 will yield the same result. Assume that

4 iEHI ) i = 1...,. m, m > I , are linearily independent, and

n x-X.-

where c. depends in general on c and h. We then have the following lemma.

Lemma 4.7. Let c = (c, ... cm)

Assume -< n is sufficiently small. Then

(4.26) sup (iv12+1W12) < <
C Y4

where I, Is independent of F and h

Proof. First note that (4.25) and the definitions of \,, ,, and Y4

(see (4.19) and (4.10) iv ), imply that 1 2  , nd 4 are all

quadratic torms in c = (c V.m). Therefore we can restrict ourselves to the

m o
case where ,

The definition of Y3 ' (see (4.10)111) and rescaling imply that

-.
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"3 = _ I[ (y)+i(y)'y dy < max(l1-) [ 1c1 1 111,2,1

0 1=1

m 
[

Also y= \1(X1 ) > /2 Ic1) V2 ~ l l,2,1 Thus v = -Y 6 <

i=1 
h

m
max(l,3 ) 1 cl 11 1 1,2 I " We obtain the same approximation for P and

so 1.12 + IV2 2 max(l,9 2 I ili,2,I

Since it is assumed that C is bounded, + 2 is bounded as well,

independent of - and h

Because {$i 1m are linearly independent in L2 (T) and 4iEL2(T)
I -i=122

,.... m , there exists an n > 0 such that £ < ,i implies that 4 +
h - +I h =

are also linearly independent in L2 (I) . The only way for the left hand side

of (4.26)to go to infinity would be for Y4 to go to zero. That is, there must

exist a sequence c, such that y4 (c) - 0 as k But JCQ = 1 and

thus {-c, hasa subsequence converging to say c Since y4  depends con-

tinuously on c , Y4 (co) = 0 , contradicting the linear independence of

{¢ + h ¢i1m , and thus concluding the proof.
i hI i=1

Now we can formulate the main result of this section as the following theorem.

Theorem 4.8. Let hj = h , j = 1,...,N , and tr be sufficiently small.

Let S2,ACH 2 be an N-1 dimensional space, such that if v4S2, A , then

v' = ajXj(x) with

-m xx j-1Xj(x) = lCi~ ( - x L .3 where

I..
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i l are linearly independent in L2 (1) Then

1
2

inf sup < KN , K > 0 (independent of E and h)

llvl 2 =1 Hull 0 -
2,c,A HA

VES2,A uESIA

Proof. The theorem follows immediately from (4.24) and Lemma 4.7.

It is readily seen that the space S satisfies the assumptions of
Z,A

Theorem 4.8 for any a . Theorem 4.8 shows that the use of test functions

recommended in (51, [101-[121, [151-[171, leads to an inf-sup condition converging to

C
0 w N w , when h is held constant. Moreover , there is no coice of i(x),

independent of c and h , which would lead to quasi-optimal results. Neverthe-

less,,in the next section we will show that the situatiem significantly improves

when assumptions about the input data are made.
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5. MODIFIED VARIATIONAL PRINCIPLE

In this section we perform a more detailed analysis of the subspace S a

defined by (4.3). In particular,-wewill compare this space to

S , when each is being tested against the subspace S of piecewise
2 ,A 1 ,A

linear trial functions.

To distinguish between the spaces S E, and S a , we will write v and
E2 aA ~ 2, E

v ,denoting a function in ,and SA respectively. By straightforward

computations we get

v -vj

(5.1) vE(X)j = h. E x)
I

where

x _-X

(5.2) E1 (x) h e v (x= (1-e-h = VE( j

Analogously,

v _v~
(5.3) v'(x)I --

a I h

where

6a x+xj l

(5.4) xjx ) W -! (x-x i

and once again v = v (x )

Let P be the orthogonal projection operator from L2 ( ) to linear functions

in . By direct computation we obtain
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(5.5) P E (x) 1 --- (coth 2) 6 ao(x-x X

where

(5.6) ai = a ?(ech) coth 2Eh 
I 2c h <

From now on we denote S S that is, we consider the particular
2,A 29A9

a = U0, where a0 is defined by (5.6). We remark that a0  is the same as the

"optimal" a described in [11], [121, [151-[171.

We now present some important relationships between S2,A and S A

2 ,A 2,A

Lemma 5.1. Let vEES and v ES a , ( a), be such that vE(xl) -

v (x.) for j = 0,... ,N. Then we have
j!

(5.7) (v,z), = (v',z)I

for any z4EL 2 (1) , z linear on I. for j = 1,..., N, ( z not necessarily

continuous at x1 ), and

(5.8) (VE,q)1 - (v,,q)I

for any qEL 2 (1) , q constant on I for j = 1,... ,N.

Proof. (5.7) follows immediately from (5.1)-(5.6). To prove (5.8) let

q be piecewise constant on A . Let z(x) = (Xq(t)dt Then z is linear on

I and therefore by (5.7) we have

JI
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1 1

0 0

Integration by parts, recalling that z is continuous, and that v (0)
E

v a(0) and v E(1) = v (1), yields the desired result.

Theorem 5.2. Let uESA vE  v 0 be as in lemma 5.1. Then

(5.9) B A (U,VE) = BA(u,va)

Furthermore, let f be a linear combination of Dirac "delta functions"

centered at the mesh points x. , j = 1,...,N-1, and any piecewise constant

function on A . Let uE CSIA and ua6S1,A be such that

BA(UE'VE) = (fvE) VvEES 2

and

B Cu ,v ) = (f,v ) , yv ES2,

A ( a a ( a avC 2,A

Then

(5.10) u =u
E a S,

Proof. For uES and YES2 or ES we have B (u,v) (cu'-u,v').
,A 2 , A 2 A A

Since :u' - u is linear on I, (5.7) implies (5.9).

The fact that vE(xj) ( Va(x) for j = 1,... ,N-l, and (5.8) together with

(5.9), yield (5. 10).

Theorem 5.2 shows that the global stiffness matrices generated by using S1, A

with S and ' (O-iao) respectively, are identical. However, we have shown (seeo!
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Theorem 4.2).that for any uEH0

p ,A

(5.11) H IU-U Jll < C inf lu-wl0
P 9 A wESI 'A HP A

with C independent of A , E . On the other hand, we have shown (see Theorem

0 2
4.8) that there exists u EP2, L  (resp. f E (H2  A)'), such that

I
2,2

(5.12) >lu-u I > Ch inf 0lu-wll
I~u-u al H 0wESH0

2,A 1,A 2,A

on a uniform partition. Comparing (5.11) and (..12) we see that the use of So

will deteriorate the result for some u, (rasp. f). The question arises as to

whether or not this f has any "engineering meaning", that is, will this effect

be observed in practice.

The preceding theorem says that if f is piecewise constant, then

uE u . This suggests that if f in "nearly" piecewise constant, then u

may be "nearly" equal to uE . We shall now show that this is true; that is,

if f (the input data) is "reasonable" then the term Ch 2 can be replaced

by C independent of E and h .

Theorem 5.3. Let fE(H2  9 ( j I,...,N. Denote by

u4EH ° A the exact weak solution of the problem

-Cu" + U, = f

u(O) - u(M) -0
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that is,

2
(5.13) BA(uv) (f,v), VvEHq ,A

Let u CESl h  be such that

B (u ,v) (f,v) VvESA = 0
(5.14)A 9A

Then for < p <

(5.15) u < (1+21 P ) inf +u-w o +

H515 CL 0ESA H0
HpAA p,ti

with C independent of A , c, p , and f

We first prove a lemma.

Lemma 5.4.

with C independent of q , A, and E.

Proof. Obviously it is sufficient to show that

(5.16) 1I<v Lq(I ) ! C1 (EII Lq(Iq)
q q
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Since v' is the projection of v' onto piecewise linear functions, we have

(5.17) (v'-v' ')1 0
E ax a II

and hence

(v')2 dx = Jvv1dx < IIVEIIL (I.) Iv L )-- q jpIJ

I. I.
J J

Therefore,

CJ ()2 dxJ

(5.18) 1 <J [v~jqdx 1< q<

[J I. pdx]
ij

(Where,if q = 1, we replace the denominator by 1lvCI L(l).)

Returning to (5.1) and (5.3),we see that instead of v' and v we

can deal with x(x) and E.(x), respectively. Since

xj(x) < 1 + 3(aj , 4E Ij

and

x.(x)>1 , >IXj_ 1 
< x < x

we get

(I X2(x)dx)q >_
I2
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and

Pd <(13 q 

I.

Therefore,

[(x)2 dxi 
-q

(5.1)> h] P( 1+3)q 2 q = h (2(1+3a.))

[~j .[× Pd p

However,

I. 
)

which implies q

(520IE Idx > Xxld p> h.((1+3ct.)2) 
-

(5.20) 1.j rJ IXx)Id [P

I1.

> 2-q (1+3aj)-2qf jXjI q d x

Ii

Th-refore, by (5.18) - (5.20) we have

(.21)iv1L (I) < 2(1+3ca )211VEjIL (
(5.21) q q
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Furthermore, it is easy to see from (5.6) that 0 < a < 1 , and thus

because of (5.21), (5.16) holds for 1 < q < . If q = we simply note that

11E HIL(j < 1 + 3a . and hence (5.16) also holds in this case. Now we

will prove Theorem 4.3.

Proof. Let v ECx ) v (x.j) for j = 0,...

Since

(f,v)a B A (uC9v)a B A(u VVE)

and

(fv E) B BA(u Efv E)

we get

B(u -u 'vE = (f,v .v)

Hence, applying Theorem 4.1 yields

< C supj (f ,v E- va)

By Theorems 4.2, 4.1, 2.2, and the triangle InequalitY
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(5.22) Ilu-ujI H0  .1 - EllU~ H0  + IIUE-Ua H HO
p,A p,A p,A

(1+ 2 P inf Ilu-wi! 0(+ su E
WES 1  H p,A + VEES 2 IvEl H 2

Therefore, we have to deal with the term

(fv ,E-V)

VEES 2A qvEA

Denote by ?' the function which is constant on IV which satisfiesyf (f-?)dx =0.

xJ

If we let F(x W (f-%?)(t)dt , then F .(xi-1 ) F F(x) = 0, and since

x -1

f 46H 1 (I.) we have

(5.23) IF (x) I < - h~IfIlc

Further, we denote by F(x) the function such that F(x) I F (x) .By

Lemma 5.1 we get

and hence

(f'vE~v,) =(f f,vEf-va) =(F',vE.v,)
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Integration by parts, (5.23), Lemma 5.4 and Lemma 3.2 yield

N N

< C max[ h 11f~tf1I-- j=l ..... Nk J1 f [l °' j][[VE[[ 
"1

Hl, ,A

It can be easily verified from (3.9) and (4.2) that

1

lIfVEff 2 < 2 qjvEl H < q <H2, A H 2  
_ _

q,c,A

thus, we have

I (f,v .V ) Ir1
(5.24) SuP- v E a < max[hI jfjj,VE S ,A 1 v l -- 2a j 1,3i

EE 2, A H tqHq,c,A

with C independent of A, q, c and f. (5.24) together with (5.22) proves the

theorem.
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6. NUMERICAL CONSIDERATIONS

Theorem 5.3 shows that for general meshes and parabolically upwinded test

functions, the error consists of two parts. In tnis section we comment on the

interplay between them.

For the error estimate (5.15) to be"nearly"quasi-optimal, the 'econd term

(6.1) C max [h 11f1l1 
j~l ... N -0

should be smaller than, or of the same magnitude as, the first (quasi-optimal)

term

(6.2) (1+2 l/p) inf I1u-wll o  .

wE Sl p

It is well known from singular perturbation theory that the exact solution

to (1.1) can be written as a combination of a smootn term and a boundary layer term.

(x-l1)/c
The boundary layer term is of the form e ; thus, it is sufficient to analyze

inf II (x-')/ wI7
w 4E SI ,A p ",

A simple analysis of this term on a uniform mesh with stepsize h implies that

for c'-h

inf i u-wl io Kh
w4ESI,A  PL

with K independent of F, h and p . Thus, (6.1) can be neglected when compared
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to (6.2).

If t_>h, standard approximation theory says that (6.2) will have magnitude

2
h , the same magnitude as (6.1).

Finally, we remark that the constant C in (6.1) can be computed exactly.

In a forthcoming paper, an adaptive approach with a-posteriori error estimates

will be studied.

1
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